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ABSTRACT

The principal economic assumptions of this paper are neoclassical

behavior assumptions on a consumer group which owns the resources

and a collection of producers employing these resources. A saddle

value problem is formulated to characterize equilibrium in the economy

in the sense that at equilibrium prices producers determine production

plans to maximize profits and that these outputs and inputs are

exactly those demanded and supplied respectively by the consumer

group.

The saddle value problem is shown to be equivalent to a dual

pair of uniextremizations termed the consumer group's problem and

the producers' problem. The neoclassical economic assumptions yield

sufficient conditions which are among the most general ones for

guaranteeing a saddle point and simultaneously a perfect duality

for the dual programming pair. Economic interpretations are given

for all the variables of the consumer group's problem and for all

the variables of the producers' problem even at non-optimal stages in

each problem. The approach is an infinite dimensional extension of

the Charnes' constrained game linear programming equivalents in finite

dimensions.\,

Key Words: Neoclassical Economics, Saddle Value Problems, Semi-

Infinite Programming, Economic Equilibrium, Two Person Constrained

Games, Infinite Games.
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1. Introduction

In economic theory there is a large class of ber.efit maximizing

models which are actually mathematical programming models. They

embrace the competitive equilibrium problem, the marginal cost pricing

problem, and the market surplus maximization problem, see Carey [5],

Hotelling [13], Negishi [15], Pressman [16], Samuelson [19], Takayama

and Judge [22], and Thore [24], [25]. The development of these

extremal principle models for interdependent economic systems has

enhanced our understanding of the market mechanisms, while providing

access to solutions by the methods and algorithms of mathematical

programming.

Conceptually, extremal models of the market system can be developed

at any of the following three levels, depending upon the nature of the

a priori information which is postulated concerning consumer behavior.

(i) The utility function of each consumer is known, and the

consumers maximize utility subject to budget constraints. Essentially,

this is the approach taken in the pioneering contribution by Negishi

15;, who showed that a certain weighted sum of utilities, subject

to the condition that all consumption plans and all production plans

be faasibl., assumes its maximum at a point of competitive equilibrium.

, '(ii) All demand functions of the consumers are known and

assumed to be integrable and invertible. This approach has been

explored in models of spatial equilibrium for some sector of an

economy by Takayama and Judge [22]. Their work has recently been

extended by Thore ([24],[25]) to the analysis of a general equilibrium

system with endogeneous determination of income, and with general

q: convex production sets. The key feature here is that the indirect
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demand functions (displaying demand prices as functions of all

quantities) are integrated into so-called "quasi-welfare", which,

subject to the condition that all consumption plans and all production

plans be feasible, assumes its maximum at . point of competitive

equilibrium.

The extremal principle for a "resource value-transfer economy",

developed by Charnes and Cooper [7], assumes given and known spending

proportions of expenditure on the various consumer goods, and given

and knonr proportions of income earned from the sale of the various

resources. A certain economic potential function is specified which

assumes an unconstrained minimum at the point of "accounting balance",

where the markets for all consumer goods, and the markets for all

resources are cleared.

(iii) In the present study we shall assume that the expenditure

function is the given and known entity. In the common manner, the

expenditure function displays the minimal expenditure which has to be

incurred (at given prices) in order to reach some given utility level.

Already Arrow and Debreu in their original paper [1] discussed

the role of the expenditure function in the neoclassical theory of

equilibrium. They wrote:

"From the viewpoint of welfare economics, it is the principle
that the consumption vector chosen should be the one which
achieves the given utility at least cost which is primary,
and the principle of maximizing utility at a given cost
only relevant when the two give identical results."

(op. cit., p. 286.)

,I For a descriptive theory of behavior under perfect competition, on

the other hand, they held the concept of utility maximization to

be primary.

I. .
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Assume that all consumers are amalgamated into one composite

unit. Let the expenditure function for this unit be given. We

shall write down a certain economic potential function, which

i/ depends upon the expenditure function. The potential function,

subjected to the condition that all production plans are feasible,

has a saddle point. At the saddle point there is competitive

equilibrium.

I, The representation of a competitive equilibrium, marginal cost

pricing, or market surplus problem as a saddle value problem is not

new. In fact, the first author suggested a biextremal problem for

extending overly constrained rejource-value transfer economies. It

' is inherent in Negishi's [15] formulation upon applying the Kuhn-

Tucker theorem to the original uniextremal formulation; see also

SCarey [5] and Thore [24], where Charnes' suggestions applied to other

economic contexts.

However, the biextremal problems of this paper are different

from those obtained by merely assigning Kuhn-Tucker variables to

equilibrium constraints and constructing the standard Lagrangian
4 saddle function. While useful in establishing important properties

A
i of optimal solutions, these kinds of saddle problems generally admit

no aseful interpretation for their variables other than when they are

at their optimal values.

IIn contrast, under the usual neoclassical theoretic assumptions

we construct a saddle value problem whose saddle point is still

R guaranteed by standard convexity and which is of the particular

bilinear format with separable constraint sets studied by Charnes,
'Cribik, and Kortanek [9]. Following their approach the polyextremal
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problem can be characterized by a dual pair of uniextremal problems.

The primal problem (I) involves the production variables plus addi-

tional variables stemming from the expenditure minimization problem.

The dual problem (II) involves as variables all prices together with

additional variables stemming from the maximization of profits, and

the production sets.

Thus, each problem (1) and (II) employs additional variables

stemming from the constraints and objective functions of the other

dual problem. However, neither problem requires any information

whatsoever on the other problem's optimal solution. In this sense

the problems are completely separable, and each problem has its own

distinct set of variables with its own economic interpretation.

Our principal equilibrium duality results are an infinite

dimensional extension of the highly unified and complete Von Neumann

minimax and Charnes constrained game linear programming equivalents

in finite dimensions, where now, as then, meaningful economic

interpretations are given for both primal and dual variables even

at non-optimal stages of each problem.

We now describe a neoclassical economy.

.I

I. ....... .....
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2. The Economy

Consider an economy which is specified in the following manner:

2.1. Consumers

The consumers are amalgamated into one single composite unit.

The unit buys consumer goods, and sells resources (labor, mineral

resources, etc.). It controls the producers. It receives income

from selling resources, and in the form of dividends (the profits

of the producers).

Let x = [Xl,X 2,...,XnXn+lI be the vector of quantities of

consumer goods bought by the unit of consumers or resources sold.

Consumer goods are entered as positive elements; resources as negative

elements.

The (n + l)th good is supposed to be a resource good, used as

numeraire. The quantity supplied and sold of this resource during

the period is Xn+ I . It is entered with a negative sign.

Let P = [plP 2,...,Pn, l] be the corresponding vector of (non-

negative) prices. The price of the numeraire good is unity.

Let w = [wlw 2,...,wn,wn+l] denote the initial stocks of the

various goods (including resources, and the numeraire) held by the

consumer unit. All elements of this vector are nonnegative.

The utility function U is assumed to be twice differentiable,

strictly quasi-concave, and possess positive partial derivatives

with respect to consumer goods over its domain. The latter assumption

is a convenient form of a non-satiation hypothesis, see Arrow and

Enthoven [21, Baumol [4], Chapter 14, and Katz [14), Chapter 9. In

this setting the consumption set X is given by:

tIt will be convenient to assume each partial derivative of U is
bounded away from zero.
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X = fx E >Rn~lIxi >_ 0 for each consumer good i and

0 xj _ -w. for each resource good j).

Thus, analogous to Debreu [10] our consumption set is also bounded

below.

The (neoclassical) indirect utility function V is defined by

(2.1) V(p,I) = max(U(x)np T x < I),

xEX

where I denotes the income received from all sources including the

sale of resources owned and refunded profits of the producing sector.

The expenditure function E is defined by

i (2.2) E(p,u) = min(p Txlu(x) u)
XEX

where u is a fixed level of utility. The optimal solution to

program (2.2) will be written xi = xi(p,u), i = 1,2,...,n,n+l.

The functions xi(p,u) are referred to as the compensated demand

functions (compensated supply functions for resources).

We summarize some well-known facts about indirect and expenditure

H functions and their derivatives, see Baumol [4], Chapter 14 or

Silberberg [17], Chapter 8.

Theorem 1. Under the assumptions above on the utility function,

let u and I be positive numbers. Then

(lA) E is strictly monotonically increasing with utility

level u, concave and differentiable in positive prices p, with

i I  P~~i = xi(p,U), i =l,.n

(p,u)

(and
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(IB) E(p,V(p,I)) = I and V(p,E(p,u)) = u.

2.2. Producers

The producers buy resources and manufacture consumer goods.

(They may also buy intermediary goods; but for simplicity of notation

such goods will not here be distinguished separately. The required

generalizations are immediate.)

Suppose that there are k = 1,2,...,r producers in the economy.

The production plan of the producer is specified by the quantities

of all his inputs and outputs. The production plan of producer k

is represented by the vector Yk = [Yki 'i = 1,2,...,n,n+l] where outputs

are entered as positive elements, and inputs as negative elements.

In the common manner, the set of all production plans Yk c Rn+l

possible for the kth producer is called his production set.

Assume that each production set Y is closed and convex.

Assume 0 E Yk (possibility of inaction).
r

Let Y = rE Yk denote the aggregate production set. The
k= k

following regularity assumptions are introduced for the aggregate

production set.

(i) y f _ = (0), (no free production, outputs require

inputs).

(ii) Y D y _ R(O)' (if a production plan is possible so is

one with output no larger and input no smaller),
(iii) Y n4l (free disposal of goods).

a (iv) Y itself is a closed set.

(v) Production plans having unbounded outputs require unbounded

inputs.

I



2 8

(vi) e is an extreme point of the sum of the producer
r

asyptoic one A i.e. E 0+ each k and k= 1
eahYk = O.

(vii) The numeraire is an input for each firm, i.e., Yk,n+l O

for k = l,...,r and unbouided resource inputs to any firm can yield

an unbounded output for any consumption good. Further, there are no

vertical supporting hyperplanes with respect to th-: variable Yk,n+l

of the closed convex production set Yk' for each k.

Each producer k maximizes profit on his production setIT(2.3) max p yk
Yk

subject to Yk E Yk'

We now formulate a saddle value problem to determine an

equilibriura for the economy.

See Debreu [101 and Rockafellar [18] and Stoer-Witzgall [21] for the
definition of asymptotic or recession cones. (vi) is sufficient to
insure that E Yk is a closed set.

kIC
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3. A Polyextremal Principle for Equilibrium

Consider the constrained polyextremal problem: Find

Ti r]
(3.1) M(u) - sup nf p kT( Y + w) - E(p,u)

SYklk=l,2,...,r lip k=lk

in IRn+l

subject to Yk ' k' k = 1,2,...,r

p ;_> 0.-

In plain words, the "pay-off function", or objective function, is

the difference between all income collected by the consumer (obtained

in the form of dividends and in the form of the value of initial

stock brought to the market-place) and the (minimal) amount of expendi-

ture which is required (at prices p) to sustain the particular utility

level u. We term the problem "polyextremal" because it depicts a

game-like situation where the k = 1,2,...,r producers (controlled

by the consuming unit) are looking for (feasible) production plans

Yk which would make the pay-off as large as possible, and where a

fictitious "market player" setting prices p would be looking for

I (nonnegative) prices which would make the same payoff as small as

possible.

The saddle function of problem (3.1) can be written in the form

(3.2) K u(y,p) = yTAp + hu(p)huP

where yT (YI'''''YT) E Z (n+l)r, u is fixed positive,

hu(P) = p-fw:- E(p,u), and where A is the (n + ) by (n + 1)r

matrix consisting of r copies of the (n + 1) by (n + 1) identity
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matrix In+l, i.e., A = [In+l ... In+1] , r times. Thus, Ku(.,.)

is concave in y and convex in p (of course, linear in y, here).

Even though both constraint sets for y and p respectively are

unbounded, the consumer and producer assumptions of Sections 2 and 3

guarantee existence of a saddle point (y ,p ). This is so because

certain recession-like sufficient conditions on the individual

functions K (.,p) and Ku (y,.) are satisfied and Theorem 37.3 of

Rockafellar [181 applies. We shall verify these conditions in an

Appendix.

As shown in Sectibn 5 of Charnes, Gribik and Kortanek [9]

these particular sufficient conditions for a saddle point also

guarantee a perfect duality for the dual pair of uniextremal problems

associated with biextremal problems of the form (3.1) above.

Our plan for the remainder and main part of the paper is as

follows.

We shall first develop the economic equilibrium implications

of the existence of a saddle point (y ,p ) for any fixed utility

level u. Next, we shall set forth the dual pair of uniextremal

problems and prove that the consumer and producer assumptions

guarantee a perfect duality. The linearity of the uniextremal problems

shall make the transition to the recession conditions stated in the

Appendix fairly straightforward.

6I
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4. Existence of an Equilibrium for the Economy

Theorem 2. Let the consumer and producer assumptions of Section 2

prevail, and let u be a non-negative a priori specified utility level.

Then (3.1) has a saddle point depending on u and denoted

( = ,...,yr) ;p *). Moreover, M(u) is continuous for u ; O.

Proof. Appendix.

The following corollaries shall be proved next for purposes of

establishing equilibrium.

Corollary 1. At the saddle point each producer will, given prices

p = p ,maximize profits on his production set.

Proof. From the definition of a maxmin it follows immediately

that

I *T * T

(4.1) P Yk P Yk

for all Yk which satisfy

Y k Yk

Hence Yk is an optimal solution to problem (2.3) with p = p

Corollary 2. At the saddle point all markets for consumer goods, and

all markets for resources (except possibly the market for the

numeraire) will be in equilibrium, provided prices are positive.

Proof. Consider the min part of (3.1), for Yk =

k = 1,2,...,r. It reads

dI T( r *

(4.2) min p T( Y + w) - E(p,u)

p k=l _O

6 subject to p >0.
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The Kuhn-Tucker conditions give

r *E(D u)
(4.3) yki + w. -- - 0k=l i

r )8E(p *,u)
Pi(Z. - 0, i =12.

or, from (IA) of Theorem 1 on expenditure functions

r
(4.4) E kYki + w - xi(p ,u) 0

PiEY ki + wi - xi(P ,u = 0, i =1,2,...,n
k1 1

which, per definition, states that all markets i = 1,2,...,n are

in equilibrium. It does not state, however, whether the market for

the numeraire (i = n + 1) is in equilibrium or not.

Corollary 3. The value of the program (3.1), denoted M(u), is

equal to the excess demand for numeraire, provided prices are positive.

Proof. The value of the program can be written, using Theorem 1

on the expenditure functions as follows:

T r
(4.5) M(u) = p ( Z Yk + w) - E(p*,u)

k- 1
r n E

*T *p fru
P (kZYk + w) - 3i xn+l (p u)k=l 1~ P

I or, taking note of (4.3)i
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(4.6) M(u) = k n+l + Wn+l xn+l(p ,u).

'Since we have assumed that the numeraire is a resource good, the

two first terms are negative. If there is a positive demand for

numeraire in the economy, the term Xn+1 is negative, and hence the

expression -xn+1  is positive. V(u) then is the excess demand for

numeraire.

We next establish existence of a positive u such that

M(u) = 0.

Lemma 1. M(O) = wn+1 .

Proof. Observe that E(p,O) = 0 for any p ; 0. Hence (3.1)
T r

becomes M(O) = sup inf p ( E Yk + w) subject to each Yk E Yk and

(YO P kl

P L 0. Let [yk be any saddle value feasible point, in particular

r r
inf pT( E y + w) > -oo. This implies (y k + w) L 0 and since
p k=l k k=l

p 0 O, j = l,...,n it follows that

T r rinf pT E Yk 4+ w) z (Yk)n+l + Wn+ l .
i PLO k= l k= i

Hence M(O) = sup ( E (Y)l+ w+ll= W+l, the maximum taken on

_ k _ k n+l n+l

'1 for example with 0 E Yk for all k.

Lemma 2. There exists u > 0 such that M(u) < 0.

Proof. Let u increase indefinitely. Since the consumption

set X is bounded below, it follows that increasing levels of

consumption goods will be required. Moreover, from non-satiation

61 increasing consumption will yield increasing utility levels. HenceI
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from (4.3) production plans having unbounded outputs will be required.

Now it also follows from (4.3) that all production inputs,

except the numeraire are equal to the resources available from the

consumer, i.e. they are bounded below. But by assumption (v),

Section 2.2, some unbounded inputs are necessarily requized and hence
r *

it necessarily follows that " Yk-n + l ' -co as u t +o. In
k= 1

particular, it follows from (4.6) that M(u) < 0 for some u > 0.

Theorem 3. There exists a uniquely determined u such that

M(u) = 0. Moreover, the optimal consumption vector can alternatively

be determined by letting the consumer maximize utility subject to an

income constraintand u is the maximum utility level achievable.

The income constraint states that the total expenditure of the

consumer must not exceed the value of the initial endowments (valued

at optimal prices) plus the value of all profits (occurring at

optimum).

Proof. Using the continuity of M(u), Theorem 2, it follows

immediately from Lemmas 1 and 2 that there exists u such that

M(u*) = 0. The value of u will now be computed by a formula,

proving uniqueness, for the case of positive prices.r

*TLet I* p( Yk + w). We will show that in fact
k=l

V(p ,I*), see (2.1) in Section 2. Of course, from

* *T r * *
0 = M(u ) = p ( 7 Yk + w) - E(p ,u ),k=l

it follows immediately that E(p ,u ) = I*. Applying (1B) of

Oki neoclassical Theorem 1, we also obtain

V(p ,I*) = V(p ,E(p,u)) = u*,
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proving that u is the maximum utility level achievable from

total income I*.

On the other hand, differentiating the right-most equality of

(IB) with respect to pi yields

3V (p,) +~. (pI 3E *((p ,Iu ) = 0.
3

)v
By the non-satiation hypothesis 7 > 0 and hence using also (1A)

gives

xi(p ,u * -(V/Pi)/()V/)I)

But by Roy's Identity, the right-most term is the optimal consumption

vector of problem (2.1) given optimal prices p and total

income I*.

The remaining case occurs when some pi, iEC is zero. From

non-satiation of U(.), it follows that M(u*) = wn+l [with a saddle

point termed the trivial saddle point determined by pj = 0,

1 l,...,n; pn~ 1 and Ak satisfying

0, jE C or j = n +

-w jck, j / n +l

This contradicts M(u*) = 0. Therefore, pi > 0, all iEC, and hence

no resource price can be zero either because producer pxofits would

then be +oD by assumption (vii). QED

The final step in our plan is to set forth the dual pair of

uniextremal problems and prove perfect duality under our consumer

and producer assumptions.

Q i i i l l R I I I ~ l l I i i l i i I i i ..
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5. An Equivalent Uniextremal Duality for the Economy

The basic construction will use supporting hyperplanes of

closed convex sets and generalized finite sequences.

For the convex function h (p) = pTw - E(p,u) introduced in

(3.1) of Section 3, we characterize its epigraph

((P,q0)1 hu (p) ., qo0)

with the tangential supporting hyperplane system:

Sn E P(i U) YT i i _ 6E p u)

(5.1) qo - Pwi - C y"w - E(y,u) - Zi~l =

I for all y in an index set U. Since from (1A) of Theorem 1 we

have

n
Z Pi + Xn(p~u) = E(p,u),

i=l 1 Pi n+l

it follows that (5.1) simplifies to

n
(5.2) qo- Z Pi(wi - xi(yu)) wn+ 1 - xn+l(y,u)

i=l

for all y in an index set U.

By assumption (iv) of Section 2.2 each production set Yk is

closed convex set in R There will therefore exist a supporting

hyperplane representation,and for notational purposes it will be

convenient to introduce yk as the first n components of Yk Yk4
so that = ( k'Yk,n+l)" The same convenient convention will

d apply to other (n + 1)-vectors when necessary.

There will exist a supporting hyperplane representation:



k {XYk, n+l Y-kdk(a) + Yk,n+ldkn+l(a) kn+2

for all a in an index set R with d(a) E R 

Sdkn+l ( a), dk'n+2 (a) E JR)

such that the moment cone in , n+2

d d( a) 0

Sdk,n+l(a) 0 is closed in R n+2.4
kn a I)

dk, n+2 (a)/

The production set assumptions of Section 2.2 imply that

dk,n+2(a) 0 O for all k and a, and that there is no loss in

generality in taking d k,n+l(a) = 1. To see this, observe that

0 E Yk implies dk,n+2(a) 2 0. On the other hand, upon setting

0 = 0 in Rn it follows from assumption (iii) that (yk,-T) E Y

for T = 1,2,.... Hence, -Tdk n+l(a) dkn2(a) for r = 1,2,...,

implying -dk,n+l (a) . 0. Finally, by assumption (vii) on inadmis-

sibility of vertical hyperplanes, it follows that dk,n+l(a) ,I 0

for all k and a, and there is therefore no loss in generality

Ni in taking dk,n+l(a) = 1 for all k and a.

Following Charnes, Gribik, and Kortanek [9], we now construct

the producer's problem I.

Canonically closed representations are sufficient for closure of
the moment cone, see Glashoff [11].
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Find M (u) =
~r

(5.4) sup r n+l +  
-Wn+l Xn+l(y1U)(Y)

k=l y -- niyul~y

from among 0  R, Yk = (-k'Yk,n+l) E JRn + l , g E Rn and the

qeneralized finite sequences E JR (U), subject to

TId
Y-dk() + Yk,n+l dk,n+2 (L)

all a. E R, k = 1,2,...,r

r
ti 4 72xi(Yu) - wi})(y) - k=Yki = 0

Z ?y) =1
Y

and

o() ;>0.

The consumer's oroblem II is the following:

Find Mii(u) =

r

(5.5) inf q + Z Z dk,n+2(a ) ,rk )
k=l a

n__k
from among (qo,) E ]R x ]R n, Tk E R , k = 1,2,...,r, where

P = (P '".,P1 ) subject to

nqo~ + ~Pi(xi ( y U) -W i ) > Wn+ I - n+l(Yu
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for all y in U

+ E dLk(a) k ( a ) = 0, k = 1,2,...,r

Er ija) = 1, k = , . ,r

and

rk >O k =1,2,...,r.

We now come to our perfect duality theorem for Problems (I)

and (II).

Theorem 4 (Perfect Duality). Assume that the consumer and producer

Iassumptions of Section 2 prevail.
Then for any u > 0,

(5.6) MI(U) = MII(u) = M(u), the saddle value of (3.1).

(5.7) There exists an optimal solution (POIyk]),?,*\ for I

and an optimal solution tqo, *, Tk ) for II and (yk,p

is a saddle point for M(u).

j Proof. We first apply Theorem 3, (i) of Charnes, Gribik and

Kortanek [9] to (I). For the application at hand the following

statement must be verified:

r
(5.8) - (yk)i = 0, i = ,...,n

k=l
and

(5.9) Yk c Ok+Yk k =1...,r

O+Y is the asymptotic or recession cone mentioned in the list of6 k
producer assumptions, see [18].

-
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and

(5.10) 0

IMPLY THAT

(5.11) Yk =, k =

We shall use the producer set assumptions given in Section 2.2.

Let (yk) and g satisfy (5.8), (5.9), and (5.10). Since
k+ kr +0EYk it follows that 0+Yk S Yk and hence E 0+Yk _c Y. Thisk k=l

r
means that E Yk also is in Y. Since 0 0, (5.8) gives that

k=1
E Yk 0 also. But by (i) of Section 2.2 we have therefore

k=l
r
Z Yk= 0. Application now of the recession condition (vi) impliesk=lthat each Yk = 0, namely (5.11) holds.

Therefore, by [9) Theorem 3(i) it follows that MI(u) = Mi i(u) =

M(u) and that M(u) is a maximum.

If The next step in the proof is to apply [9] Theorem 3(ii) to

prove that M11 (u) is a minimum. The key observation is that in-

equalities involving a recession function can be stated in terms of

homogenizations of the supporting hyperplane system of the epigraph

of the given function.

It is sufficient for (II) to assume a minimum zhat:
i- 

-

n
(5.12) qo + E p.(x.(y,u) - wi) 0 for all y 1AL~ 1
and

(5.13) p a d()k ( a ) , ',"
k~ak~
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and

(5.14) E Tk(X) = 0, k =r,

(where each Tk(.) ; 0, see (5.5)) and

r
(5.15) qo I -7 7. d k,n+2 (C) Tk( )

a k=l

IMPLIES THAT

(5.16) = 0 and O= 0.

From (5.14) we have immediately that each Tk() 0 0 and

hence p= 0 by (5.13), and qo 0 by (5.12). As we have already

observed in Section 5, dk,n+2 () > 0 and hence by (5.15), qo 0.

Since qo 0 has been established it therefore follows that

qo= 0, proving that (5.16) holds.

Finally by [9] Theorem 3 we have

M(u) - R - ,, k + w) - E(P u) ,

k=1

using the notation in (3.2) of Section 3, proving the final saddle

point statement of the theorem.

We turn now to economic interpretations of the dual programs I

and II.

J.'i
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6. Economic Interpretation of the Dual Uniextremizations

Production Sector I

The production plan variables k= are now augmented by

generalized finite sequences stemming from the consumer's expenditure

function, which is a function of the price vector for a given, fixed

SI utility level. In this sense the input to the producers' problem I

is the expenditure function per se. However, no knowledge is

required whatever about the consumer's problem II decisions, or even

ranges of decision.

In addition to the finite sequences ?\(.) there is also a

finite list of variables [i These new additions to Program I

can be interpreted with the help of the first set of constraining

equations of (I) rewritten, slightly as follows:

*r
(6.1) -9i + Z Yki = E(xi(Y.u) - wi);\(y), i = 1,...,n.

k=l y

Since > 0 and Yk E Yk' we see that the vector on the left in
r

(6.1) lies in the aggregate production set Y = E Y because of
k=l k

(ii) in Section 2.2. We shall therefore term a translation

vector which translates a given production plan to a production plan

having outputs no larger and inputs no smaller.

Now, observing in (I) that Z ?4(y) = 1 where y is an index

Y
vector ranging over prices, we render \(-) the following inter-

pretation.

with \(') is a system of non-negative weighting variables, indexed

with prices and summing to 1, applied to demands or supplies of all

goods except numeraire less their initial endowments. Then, (6.1)
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states that a weighted combination of the demands for goods other

than numeraire less initial endowmerts lie in the aggregated production

set.

Consumer's Problem II

The initial price variables of the consumer p are now augmented

by generalized finite sequences determined by each of the production

sets Yk' k = l,...,r. Thus, the additional data required by the

consumer are the production sets themselves or equivalently supporting

hyperplane representations of them. Nevertheless, Program II requires

no knowledge of the choices of production plans which the producers

will make. [The qo variable is merely the value of the initial

endowments less the expenditure function for any p, and hence can

be ignored.]

Now the first set of equations in the consumer's program II

states that the price vector should be a convex combination of vectors

normal to the frontier of the production set Yk for k

Thus, we term the Tk(.) functions as production frontier weights

indexed by frontier production plans of producers k, where these

Ithemselves are points vn the boundary of the closed convex production

set Yk"

In summary, each variable in the producers' problem I and the

consumer's problem II has its own interpretation for any value it

assumes, in particular non-optimal ones.

'1
A



17'

24

Obiective Function for Each Player

At dual optimal solutions each player's objective function

equals M(u) given in (3.1). Basically, each player takes this

joint expression as objective function, but from differing view-

points according to his own problem constraints. In a generalized

sense, with appropriate names yet to be determined, M(u) is the sum

of producer's surplus and consumer's surplus and the excess demand

for the numeraire good.

In higher dimensions consumer surplus is defined with respect

to those prices which vary, which in our case is simply the commodity

price vector (p= (lP2,...,pn). When prices are uniquely determined

as functions of quantities and vice versa, then one can use the

higher dimensional line integral calculus in a neoclassical setting

to demonstrate the decomposition of M(u) into the sum of surpluses

and excess numeraire demand.

Under this interpretation the producer wishes to maximize

this joint sum provided that what he actually produces will be

demanded (as discussed more precisely above). On the other hand,

the consumer wishes to minimize this joint sum provided that his

price vector is normal to the production frontier. It appears

Sthat our general formulation thus embraces the important case in

economic theory where integrability and invertibility assumptions

prevail.

• i
I



25

APPENDIX: PROOF OF THEOREM 2, SECTION 4

Most of the work has already been done because of the impli-

cations that have been proved in our perfect duality Theorem 4.

We shall refer to (a) and (b) of Theorem 37.3 of Rockafellar,

specialized to our saddle function given in (3.2) namely for fixed u

K T
Ku(",R) X Ap + hu(R

where

T T T
X i Yn) £ ('l,...,Yr

and

A= [In+l' .. ,In+l], r times,

In+1 (n + 1) by (n + 1) identity matrix.

For this special case we use the equivalence established in

Charnes, Gribik, and Kortanek [9] between condition (i) of Theorem 3

there with condition (b) of Theorem 37.3 [18], and the equivalence

between condition (ii) of Theorem 3 [9] with condition (a) of Theorem

37.3 [18]. Since Theorem 4 itself in Section 5 has established that

conditions (i) and (ii) [9] are true, it therefore follows that the

Rockafellar [18) conditions (a) and (b) hold, establishing existence

of a saddle point for all u > 0.

In relation to other minimax theorems Rockafellar [18] points

out on page 431, that the sharpest results in Sion [20] require less

€,
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than concavity-convexity of the saddle function but require a

compactness assumption. In contrast Theorem 37.3 and the hypotheses

of our uniextremal duality require concavity-convexity but no

compactness assumption.

The remaining task is to establish continuity of M(u), u 0.

We shall use the existence of a saddle point for every u > 0, saddle

value inequalities, and some of the production set assumptions of

Section 2.2. We have been aided by Gol'stein's book [12].

Continuity of M on fu l u > 0)

Let u be fixed, u 0.

Part I. (Establishing lim M(u) L M(u)).

Suppose to the contrary that there exists a sequence (u

im ut = u such that

(Al) sup inf Ku (y,p) < M(u) - 6 for all J
y p

for some 6 > 0. Let P = (p ,l)I E ]R n. 0 ) and

= (y= (Y''''',r.)leach Yk E Yk Recall that Y Y k' seek
Section 2.2.

Let (y ,p ) E 4 x P denote a saddle point associated with u

for all t. Then the standard string of saddle value inequalities

is:

(A.2) K u (y,pt) K u (yt,p't) Ku (y t, p)

for all y c 1i and all p E P.

We first establish that the sequence (P.) must be bounded solely

I because of (A.2) and our consumer non-satiation hypothesis.i There is

This fact will also be used in Part II of the proof.

I
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nothing to prove if all prices are not positive because trivial

j saddle points may then be used in (A.2). Suppose to the contrary

that I1p.11 = IIytI + 1 -* o as t - aD and all prices are positive.

Let 0 + 1. Examining (2.2) establishes the well-known

homogeneity property of the expenditure function, in particular,

(A.3) E(Ot ptu) = min(8l pxIu(x) ;> u'J

has the same optimal solution (2.2), and therefore x4(p,uu,) =

V E(p.,,ut) together with xn+l( pU ) also solves (A.3).

Because of the second order differentiability conditions on

the utility function U, (A.3) is a stable program in the sense of

continuity, namely if % p' -) p, then there is a limit point x

of fx,(p.,,U.,)) and x is an optimal solution to E(p,u). Without

loss of generality, we assume that (0- pj converges to a point, say
p in n+l.

Observe that since p, = (t,l) it follows that p = (pO) and

II~i =1.

Let y E l. Rewriting the first inequality of (A.2) in detail

T T T _t T'I (A.4 ) P + pw - E(p.,u,) , pt F Y + p w - E(p.,wt).
, k k

Multiplying (A.4) by Ot yields

1 TA5T1 -1 T 4 -
(A . h  y' + 0- p~w - E(% p, 0 E y y0 t E(%,

k k

using also the homogeneity of E with respect to prices. Since

each (y ,p,) is a saddle point, Corollary 3 applies to simplify the

right-hand side of (A.5), namely (A.5) becomes

-1T -1lT -l -1S(A.6) 0ili k Y + 0 I p TW - E(O-I&' 1 ti k YkF n 4 +  lW n+l

k k

-nW1
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Applying the "lim sup" to both side.3 of (A.6) and inserting

limits where possible and observing that. E n -t 0 each t,
k k, n+1

gives the limiting inequality,

(A.-7) k + pw - E(p,) -xn+l(Pu).
(a.7)) n+1k

k

(A.7) has several implications.

(A.8.i) The case pi = 0 for some consumption good i is

impossible. Otherwise, by non-satiation and (1B) of

Theorem 1, u, = V(p,E(p,,u,)) for each t implies

a = V(p,E(p,u)) =+0

which is absurd. Therefore, for each consumption good

i, p > 0.
i

(A.8.2) Since, as we have observed, pn+l = 0, the numeraire can be

input without bound at no cost to the producers. Hence by

assumption (vi) of Section 2.2 any producer can obtain

unbounded outputs of any consumption good i with pi > 0.

This clearly contradicts (A.7) for now the left-hand side

I grows without bound.

We have therefore established that (p..) is bounded because of

existence of saddle values and our consumer-producer assumptions.

Without loss of generality we may assume that the price vector

sequence converges in general, namely lim pt = p.

However, in this situation, it follows from (A.2) that for

.
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each y e

Ku (y,pt) < M(u) - 6 for all t.

Upon taking limits we obtain: K_(y,p) * M(u) - 6, and hence
u

sup K_(y,p) . M(u) - 6. We now use the saddle value property in
y u
combination with this last inequality, namely,

M(u) = sup inf K_(y,p) = inf sup K_(y,p)
y p u p y u

sup K_(y,p) _< M(u) - 6,

y u

which is an absurdity, since 6 > 0.

In summary, then assumption (A.1) has led to a contradiction

and therefore we have

(A.9) lim M(u) M(u).
u-eu

Part II. (Establishing lim M(u) < M(u)).

Suppose to the contrary that there exists a sequence (us),

u6 - u such that

(A. 10) inf sup K (yp) > M(u) + 6
p y

for some 6 > 0.

Again, we refer t) the standard string of saddle value inequalities

(A.2) and consider two cases.

+We are following Gol'stein's argument [12], page 48-49.
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Case 1. Z y k z.k 2

Since Ku(y,p) depends on y only through Z yk, let usS- k

abuse notation for convenience by writing z in place of y.

Then for each p E P,

M(u) + 6 < Ku (ytpI) KKu (y ,p)

implying

M(u) + 6 _ K_(z,p) for all p
u

which in turn implies that

M(u) + 6 < inf K_.(z,p).
p u

Arguing as before, we obtain a contradiction, namely,

M(u) = inf sup K_(y,p) = sup inf K_(y,p) '> inf K (y,p) > M(u) + 6.
p y U y p u p u

Therefore (E y ). cannot be bounded.k
k

ease 2. C E Y t and Ili 1 1 -* +CD.

Upon dividing (A.2) by o and examining the right-most

inequality we obtain:

T E It pT Yk
k pIw E (p., u ) k _TE(,u_

(A.11) t + +Ilo 11 IaIo Ia-II Cl *t 1. lioa II ll 1 a, i

for each p E P.

It has already been established in Part I (in general) that

(p6 must be bounded, and so without loss of genera'ity we assume

that lim p, = p E P. Similarly, we may assume

, " ,
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imU L A with z 1.
t Io 11

We are now prepared to examine the limiting inequality of (A.11)

as t -co.

For each p c P it follows that

(A.12) p ,

using the facts that E(O,u) = 0, (p.), and (u.) converge.

AIt follois for a net resource j that z. = 0. Otherwise,

Aif zj < 0 we may take pj t +co contradicting (A.12).

Now at each saddle point (y lp ) in (11,P) we have (as usual):

k

and hence

1 k

V E (pt, uj)

Ila' lio i

Taking limits of both sides yields

AOz.

A

Therefore, z = (RZ (QO), since in particular n + 1 is also

a resource. This contradicts JjZA = 1, and therefore Case 2 it

impossible. Hence (A.10) leads to a contradiction, and therefore

(A.13) lim M(u) < M(u).

Combining (A.9) and (A.13) gives

I~mm Imm m ~ m mmm mm n• hai mn ~a uuu •m nn•m
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M(u) < lim M(u) < lim M(u) M Mu).

Hence, lim M(u) = M(u) establishing continuity.

Remarks. (1) Much shorter and elegant proofs are immediate if

one assumes that the solution sets

(ylinf Ku(y,p) = M(u))
p

and

(pisup Ku(Yp) = M(u))
p

are bounded. (In particular, one could obtain differentiability of

M(u).) See Gol'stein [12], Section 7.

We could have used these assumptions together with regularization

or bounding procedures for the production set 4 and the price

set P. This route, however, would require more complicated dual

programs than those employed in our approach.

(2) Professor Jonathan Borwein has indicated how the

hypotheses of the main theorems in Charnes, Gribik, and Kortanek [9]

may be weakened by using the sharper properties of proper separation

of convex sets rather than solely separation alone.

A!
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